Biography
Dr. Sarah M. Weinstein is a biostatistician who specializes in statistical issues in neuroscience research, with a focus on high-dimensional brain imaging data. Motivated primarily by studies of neurodevelopment and neuropsychiatric disorders, her work aims to improve statistical rigor and interpretability in these settings. Dr. Weinstein’s ongoing work includes statistical approaches to mitigate the impact of sampling bias in large-scale studies of brain health. She also has broad experience as a collaborative biostatistician in neurology, anesthesiology, psychiatry/psychology, and other areas.
Education
- PhD, Biostatistics, University of Pennsylvania
- MS, Biostatistics, University of Pennsylvania
- BA, Statistics and Psychology, Columbia University
Labs: Weinstein Lab
Courses Taught
Number |
Name |
Level |
---|---|---|
EPBI 5006 |
Biostatistics and Applied Analysis of Health |
Graduate |
EPBI 8204 |
Multilevel Modeling in Interdisciplinary Research |
Graduate |
Selected Publications
-
Chen, A.A., Weinstein, S.M., Adebimpe, A., Gur, R.C., Gur, R.E., Merikangas, K.R., Satterthwaite, T.D., Shinohara, R.T., & Shou, H. (2024). Similarity-based multimodal regression. Biostatistics, 25(4), pp. 1122-1139. England. doi: 10.1093/biostatistics/kxad033
-
Weinstein, S.M., Vandekar, S.N., Li, B., Alexander-Bloch, A.F., Raznahan, A., Li, M., Gur, R.E., Gur, R.C., Roalf, D.R., Park, M.T.M., Chakravarty, M., Baller, E.B., Linn, K.A., Satterthwaite, T.D., & Shinohara, R.T. (2024). Network enrichment significance testing in brain-phenotype association studies. Hum Brain Mapp, 45(8), p. e26714. United States. doi: 10.1002/hbm.26714
-
Weinstein, S.M., Vandekar, S.N., Alexander-Bloch, A.F., Raznahan, A., Li, M., Gur, R.E., Gur, R.C., Roalf, D.R., Park, M.T.M., Chakravarty, M., Baller, E.B., Linn, K.A., Satterthwaite, T.D., & Shinohara, R.T. (2023). Network Enrichment Significance Testing in Brain-Phenotype Association Studies. BioRxiv. United States. doi: 10.1101/2023.11.10.566593
-
Weinstein, S.M., Davatzikos, C., Doshi, J., Linn, K.A., Shinohara, R.T., & Initiative, A.D.N. (2023). Penalized decomposition using residuals (PeDecURe) for feature extraction in the presence of nuisance variables. Biostatistics, 24(3), pp. 653-668. England. doi: 10.1093/biostatistics/kxac031
-
Pines, A., Keller, A.S., Larsen, B., Bertolero, M., Ashourvan, A., Bassett, D.S., Cieslak, M., Covitz, S., Fan, Y., Feczko, E., Houghton, A., Rueter, A.R., Saggar, M., Shafiei, G., Tapera, T.M., Vogel, J., Weinstein, S.M., Shinohara, R.T., Williams, L.M., Fair, D.A., & Satterthwaite, T.D. (2023). Development of top-down cortical propagations in youth. Neuron, 111(8), pp. 1316-1330.e5. United States. doi: 10.1016/j.neuron.2023.01.014
-
Weinstein, S.M., Vandekar, S.N., Baller, E.B., Tu, D., Adebimpe, A., Tapera, T.M., Gur, R.C., Gur, R.E., Detre, J.A., Raznahan, A., Alexander-Bloch, A.F., Satterthwaite, T.D., Shinohara, R.T., & Park, J.Y. (2022). Spatially-enhanced clusterwise inference for testing and localizing intermodal correspondence. Neuroimage, 264, p. 119712. United States. doi: 10.1016/j.neuroimage.2022.119712
-
Hu, F., Weinstein, S.M., Baller, E.B., Valcarcel, A.M., Adebimpe, A., Raznahan, A., Roalf, D.R., Robert-Fitzgerald, T.E., Gonzenbach, V., Gur, R.C., Gur, R.E., Vandekar, S., Detre, J.A., Linn, K.A., Alexander-Bloch, A., Satterthwaite, T.D., & Shinohara, R.T. (2022). Voxel-wise intermodal coupling analysis of two or more modalities using local covariance decomposition. Hum Brain Mapp, 43(15), pp. 4650-4663. United States. doi: 10.1002/hbm.25980
-
Solomon, A.J., Kaisey, M., Krieger, S.C., Chahin, S., Naismith, R.T., Weinstein, S.M., Shinohara, R.T., & Weinshenker, B.G. (2022). Multiple sclerosis diagnosis: Knowledge gaps and opportunities for educational intervention in neurologists in the United States. Mult Scler, 28(8), pp. 1248-1256. England. doi: 10.1177/13524585211048401
-
Pines, A.R., Larsen, B., Cui, Z., Sydnor, V.J., Bertolero, M.A., Adebimpe, A., Alexander-Bloch, A.F., Davatzikos, C., Fair, D.A., Gur, R.C., Gur, R.E., Li, H., Milham, M.P., Moore, T.M., Murtha, K., Parkes, L., Thompson-Schill, S.L., Shanmugan, S., Shinohara, R.T., Weinstein, S.M., Bassett, D.S., Fan, Y., & Satterthwaite, T.D. (2022). Dissociable multi-scale patterns of development in personalized brain networks. Nat Commun, 13(1), p. 2647. England. doi: 10.1038/s41467-022-30244-4
-
Chen, A.A., Weinstein, S.M., Adebimpe, A., Gur, R.C., Gur, R.E., Merikangas, K.R., Satterthwaite, T.D., Shinohara, R.T., & Shou, H. (2022). Similarity-Based Multimodal Regression. Cold Spring Harbor Laboratory. doi: 10.1101/2022.04.13.488201
-
Hu, F., Weinstein, S.M., Baller, E.B., Valcarcel, A.M., Adebimpe, A., Raznahan, A., Roalf, D.R., Robert-Fitzgerald, T.E., Gonzenbach, V., Gur, R.C., Gur, R.E., Vandekar, S., Detre, J.A., Linn, K.A., Alexander-Bloch, A., Satterthwaite, T.D., & Shinohara, R.T. (2022). Voxel-wise Intermodal Coupling Analysis of Two or More Modalities using Local Covariance Decomposition. Cold Spring Harbor Laboratory. doi: 10.1101/2022.02.19.481070
-
Weinstein, S.M., Davatzikos, C., Doshi, J., Linn, K.A., & Shinohara, R.T. (2022). Penalized Decomposition Using Residuals (PeDecURe) for Nuisance Variable Adjustment in Multivariate Pattern Analysis. Cold Spring Harbor Laboratory. doi: 10.1101/2022.01.27.477859
-
Weinstein, S.M., Reilly, E., Garland, N., Zimmerman, V., & Jacobs, D. (2022). Impact of a Virtual Wellness Program on Quality of Life Measures for Patients Living With Multiple Sclerosis During the COVID-19 Pandemic. Int J MS Care, 24(6), pp. 282-286. United States. doi: 10.7224/1537-2073.2021-134
-
Leavitt, V.M., Kever, A.M., Weinstein, S., Shinohara, R.T., Schmidt, H., Aoun, S.M., Solari, A., & Solomon, A.J. (2022). Patient-reported experience of multiple sclerosis diagnosis is associated with subsequent disclosure and concealment. Multiple Sclerosis and Related Disorders. Elsevier.
-
Weinstein, S.M., Vandekar, S.N., Adebimpe, A., Tapera, T.M., Robert-Fitzgerald, T., Gur, R.C., Gur, R.E., Raznahan, A., Satterthwaite, T.D., Alexander-Bloch, A.F., & Shinohara, R.T. (2021). A simple permutation-based test of intermodal correspondence. Hum Brain Mapp, 42(16), pp. 5175-5187. United States. doi: 10.1002/hbm.25577
-
Weinstein, S.M., Coates, L.C., Helliwell, P.S., Ogdie, A., & Stephens-Shields, A.J. (2021). Simulation-based design of pragmatic trials in psoriatic arthritis using propensity scores. Clin Trials, 18(5), pp. 541-551. England. doi: 10.1177/17407745211023840
-
Cozowicz, C., Memtsoudis, S.G., & Poeran, J. (2021). Risk factors for postoperative delirium in patients undergoing lower extremity joint arthroplasty: a retrospective population-based cohort study. Regional Anesthesia & Pain Medicine, 46(1), pp. 94-95. BMJ. doi: 10.1136/rapm-2020-101617
-
Weinstein, S.M., Vandekar, S.N., Adebimpe, A., Tapera, T.M., Robert-Fitzgerald, T., Gur, R.C., Gur, R.E., Raznahan, A., Satterthwaite, T.D., Alexander-Bloch, A.F., & Shinohara, R.T. (2020). A simple permutation-based test of intermodal correspondence. Cold Spring Harbor Laboratory. doi: 10.1101/2020.09.10.285049
-
Poeran, J., Cozowicz, C., Zubizarreta, N., Weinstein, S.M., Deiner, S.G., Leipzig, R.M., Friedman, J.I., Liu, J., Mazumdar, M., & Memtsoudis, S.G. (2020). Modifiable factors associated with postoperative delirium after hip fracture repair: An age-stratified retrospective cohort study. Eur J Anaesthesiol, 37(8), pp. 649-658. England. doi: 10.1097/EJA.0000000000001197